-->
The Quantum Mechanical AtomLevels and Sublevels
Images displayed in all types of media depict atoms as dense spherical nuclei surrounded by
orbiting electrons. It’s a compelling image that’s easy to remember. However, this image leaves
out many important details, and so doesn’t help us to fully understand actual atomic structure.
For example, if a negative electron were simply in orbit around a positive nucleus, why
wouldn’t it be attracted to the positive charge and quickly spiral toward the center? There
must be something keeping an atom from collapsing in on itself.
In the early twentieth century, physicist Niels Bohr proposed an explanation. Bohr’s hypothesis
said that electrons must occupy discrete orbits around a nucleus based on the energy level of
those electrons. If an electron gains energy, it rises to a higher orbit; if it loses energy, it falls
to a lower orbit. Within each of the orbits were suborbits, which corresponded to smaller
variations in energy level. As part of his theory, Bohr proposed a systematic way for identifying
the energy levels and sublevels and their corresponding orbits and suborbits.
Let's take a look at the table of Levels and Sublevels, starting from the nucleus and working
outward: The levels (or shells) are numbered and the sublevels (or subshells) are indicated by
the letters s, p, d, or f.
Levels and Sublevels
1
1 s
2 s p
3 s p d
4 s p d f
5 s p d f
6 s p d f
7 s p d f
You can see that the innermost zone, level 1, contains only one sublevel, s. Level 2 contains
sublevels s and p. Level 4 is the first level that can contain all four sublevels: s, p, d, and f.
Levels further outward from level 4 have the same sublevel configuration.
On any level, a single s sublevel exists by itself, containing two electrons. However, the other
three sublevels are actually composed of three or more sublevel orbitals. For example, on any
level, a p sublevel is actually made up of a group of three orbitals. Similarly, d sublevels are
made up of a group of five orbitals, and f sublevels are composed of a group of seven orbitals.
Each of these individual orbitals can contain a maximum of two electrons. Below is a summary
of sublevels and the maximum number of electrons that they can contain:2
Sublevel Sublevel Groups Total Electrons
In the simplest terms, this means that an s sublevel can contain as many as two electrons, a p
sublevel can contain as many as six electrons and so on as shown in the last column of the
table.
So the number of electrons in a given sublevel is expressed by writing the level number followed
by the sublevel’s letter, with the number of electrons in the sublevel written as a superscript.
For example:
3p2
(There are 2 electrons in the p sublevel of level 3.)
4d7
(There are 7 electrons in the d sublevel of level 4.)
With this information, we can discover the reason for the periodic nature of elements, the
“why” behind Mendeleyev’s periodic table.
Electron Configuration
To better understand electron configuration, let’s take a look at a specific element. Lithium,
element number 3 on the periodic table, is a member of group IA, the alkali metals. Its atomic
number, 3, is based on the three positive protons in its nucleus. These protons will, in turn,
attract and hold three electrons. The arrangement of these electrons about its nucleus is what
gives lithium its chemical properties. Let’s see how those electrons are distributed.
Start by looking at the table of Levels and Sublevels. Then check the table of Total Electrons to
see how many electrons each level can contain.
Level 1 contains a single s sublevel = 2 electrons
Lithium has three electrons, which leaves one electron unaccounted for. The table of Levels and
Sublevels shows us that we have used all of the available sublevels in level 1, so we move to the
next level and find that our final electron will be a single electron in level 2, sublevel s. The
electrons for lithium are recorded as 1s
. You can check the electron count by adding the
superscripts. The chemical nature of elements is due to the electrons in the outermost level, so
lithium’s highly reactive nature is a result of the s1 electron in its outermost level.
Sodium, element number 11, is also an alkali metal. It’s a member of the same group IA and has
similar properties. The number of electrons in the first two levels of an atom of sodium is as
follows:
Level 1 contains a single s sublevel = 2 electrons
Level 2 contains s and p sublevels = 2 + 6 = 8 electronsSo far, levels 1 and 2 have given us 10 electrons. But sodium has 11 electrons. The table of
Levels and Sublevels again shows us that we have used all of the available sublevels in levels 1
and 2, so we move to the next level and find that our last electron will be a single electron in
level 3, sublevel s. We can record all of the sublevels as before, and check our electron count
by adding superscripts:
Note that the last added electron is 3s
1
. From the outside, sodium looks just like lithium with a
single s
1
electron in its outermost level. Can you see why Mendeleyev put them in the same
column?
Repeating Electron Patterns
We’re beginning to see that the repeating properties of elements in the periodic table are due
to the repeating arrangement of electrons around the nucleus. Indeed, these and similar patterns appear throughout the periodic table. However, not all cases are as simple as those of
lithium, sodium, and other elements with low atomic numbers.
For all elements after calcium, number 20 on the periodic table, the nearness of energy
between sublevels blurs the order of electron selection. Scanning through the elements,
beginning with atomic number 21, scandium, we see s sublevels being filled before d sublevels
of the previous levels are filled. This is because the s sublevel of level 4, for example, is lower
in energy than the d sublevel of level 3. The nearness in energy between s and d sublevels
makes it important to read the Levels and Sublevels table in a special way. Reading straight
across levels as we did in the previous examples works only up to 3p. After that we need to
switch the fill order of d and s sublevels.
No comments:
Post a Comment